
Importing Next Generation
Sequencing Data in LOVD 3.0

J. Hoogenboom

April 17th, 2012

Abstract
Genetic variations that are discovered in mutation screenings can be stored in Locus

Specific Databases (LSDBs). Leiden Open Variation Database (LOVD)[1] version 3.0, an
open-source LSDB system currently in development, will extend its capabilities beyond
that of a traditional LSDB by storing genetic variation data anywhere on the genome.

With the advent of Next Generation Sequencing (NGS) techniques, researchers are able
to generate large amounts of genetic variation data. Because of the enormous quantity of
the data, researchers are in need of a way to import this data into LSDBs automatically.

This report describes the development of NGS data import functionalities in LOVD 3.0.
Data can be imported from VCF files[2] or SeattleSeq Annotation files[3].

Variants are described according to HGVS nomenclature guidelines[4] with the use of
web services provided by the Mutalyzer project[5].

Finally, additional data about specific variants can be found in other public LOVD
installations worldwide though the use of a new Global Search feature.

1 Introduction
Locus Specific Databases (LSDBs) store genetic variation data within the focus of a specific
gene or disease. Leiden Open Variation Database (LOVD)[1] is an open-source LSDB system
that can be downloaded for free from LOVD.nl. LOVD 3.0, which is currently in the Beta
stage of development, will extend its capabilities beyond that of a traditional LSDB by being
able to store variant data anywhere on the genome, also away of known genes.

LOVD is written in PHP, a programming language developed specifically for creating dy-
namic websites and web-based applications. The LOVD user interface consists entirely of
HTML web pages that are dynamically generated by the PHP back-end. In LOVD 3.0, with
the use of JavaScript and AJAX (Asynchronous JavaScript And XML), the web pages are
highly interactive and often do not need to be reloaded to do such things as searching or
sorting data in a table. Instead, AJAX allows scripts on the page to communicate with the
web server and update parts of the page accordingly.

1



Introduction

Traditionally, patients are screened for disease-causing mutations using screening tech-
niques that are targeted at a single, potentially defective gene. This is done by selectively
amplificating (a fraction of) this gene from the genome to determine the nucleotide sequence
of the gene using various traditional techniques like Sanger Sequencing and Southern Blotting.
Various screenings are done to determine how a patient’s copy of the gene differs from the
normally functioning gene product. In case several genes may be involved in a single disease,
experiments may need to be repeated for each gene.

With the current rapid developments in the field of Next Generation Sequencing (NGS),
it has become possible to get a detailed overview of the complete genome (or exome) of an
individual. This way, it has become relatively easy to discover tens of thousands of an indi-
vidual’s genetic variants, across the entire genome. All genes can be screened simultaneously,
eliminating the need to select genes of interest and enabling the possibility of finding novel
gene-to-disease associations.

LSDBs can aid researchers by storing the data about a patient’s variants in a structured
way. Additionally, online data sources can be linked to the variants in the LSDB to detect
potentially problematic variants (e.g. variants that could cause splicing defects resulting in de-
fective proteins). Because entering all variants from NGS data manually would be a tremendous
amount of work, scientists are in need of a way to automatically insert this information into
LSDBs. For this reason, LOVD 3.0 will include the option to import genome- or exome-scale
variation data from Variant Call Format (VCF) and SeattleSeq Annotation files.

The Variant Call Format[2] is the most popular file format in use to describe an individual’s
genetic variations. Because VCF files do not contain data about the effects of the variants
on transcripts, LOVD 3.0 provides functionality to map the variants onto transcripts using a
number of web services provided by the Mutalyzer project[5].

SeattleSeq Annotation[3] is a service provided by the department of Genome Sciences at
the University of Washington. Scientists may upload a file with genetic variant information,
like VCF files, and the SeattleSeq service will enrich the data with detailed annotations of
the variants. These annotations include gene names, transcript accession numbers, predicted
protein changes, and functional effects of the variants.

Finally, the variants that were detected in an (NGS) experiment may have been studied
before. For example, chances are another LOVD contains detailed information about a variant’s
pathogenicity. Therefore, a new service was implemented which allows the user to find out
whether a given variant has been reported in other LOVD installations. The service will provide
links to other databases that share the same variant so the user can easily find any information
stored in any LOVD worldwide.

This service makes use of data exposed through the LOVD API (Application Programming
Interface). With the LOVD API, the data in LOVD can be accessed in formats that are easily
interpreted by computer programs, as opposed to the usual HTML web pages. The API also
allows genome browsers to include LOVD data as a special track. LOVD 3.0 does not yet have
an API, so LOVD 3.0 installations currently do not show up in the ‘Global Search’ service.

This report describes the development of the VCF and SeattleSeq import scripts, the
automatic mapping functionality, and the Global Search service.

2



Introduction HGVS nomenclature guidelines

1.1 HGVS nomenclature guidelines

The Human Genome Variation Society (HGVS) provides guidelines[4] for the description of
genetic variants. These guidelines were created to replace the various ways researchers used
to describe the variants they found. The format was specially crafted to provide unambiguous
and understandable descriptions of variants.

To further prevent ambiguity of the descriptions, variants must be described with respect to
a specific reference sequence (which is either a chromosome, cDNA, RNA, or protein sequence).

An example HGVS variant description is NM_004006.1:c.3G>T. In this example, a tran-
script reference sequence is specified with NM_004006.1. Instead of using an accession number,
chromosomes may also be specified by chrX and genes by their gene symbol for easier recog-
nition. Furthermore, if the reference sequence can be clearly derived from the context, it may
be omitted.

The c. part specifies that the nucleotides in the sequence are numbered according to
coding DNA numbering. The numbering schemes are listed in Table 1. In this case, c.3 refers
to the third nucleotide in the coding DNA sequence, which is usually the ‘G’ in the ‘ATG’ start
codon. Ranges of nucleotides are described using an underscore (_) between the start and end
positions. Both the start and end positions are inclusive. For insertions, the positions point to
the two bases (i.e. one base on each side) flanking the insertion.

Prefix Description
g. Genomic positions. The first nucleotide in the chromosome sequence is

number 1.
m. Genomic positions on the mitochondrial DNA sequence.
c. Coding DNA positions. Nucleotide 1 is the ‘A’ in the ‘ATG’ start codon;

the base before that is -1. Intronic bases are numbered using offsets from
the nearest exon. So, the first base in an intron is counted as c.234+1,
where the previous exon ended at base 234. The first base after the stop
codon is numbered as c.*1.

r. RNA numbering. Nucleotide 1 is at the transcription initiation site.
n. RNA numbering on a non-coding sequence.
p. Protein numbering. The initiating Methionine is number 1.

Table 1: Numbering schemes in HGVS variant notations.

Finally, G>T describes the actual variant. In this case, the nucleotide at position 3 is
changed from a ‘G’ to a ‘T’ (a substitution). The most common variant types are summarised
in Table 2.

1.1.1 Mutalyzer

The Mutalyzer project[5] provides services for converting variant descriptions between different
reference sequences and numbering schemes. Calculating these conversions can be rather
difficult, for example because they depend on exon boundaries. Mutalyzer was created to aid

3



Introduction LOVD database tables

Type Example HGVS description
Substitution ACTG ⇒ ACCG g.3T>C
Deletion ACTG ⇒ ACG g.3del
Insertion ACTG ⇒ ACGTG g.2_3insG
Duplication ACTG ⇒ ACTCTG g.2_3dup
Inversion ACTG ⇒ AAGG g.2_3inv
Deletion/insertion ACTG ⇒ AGGC g.2_4delinsGGC

Table 2: The most common HGVS variant types.

researchers in making and understanding HGVS variant descriptions. It is also used in LOVD
to tell the user whether their variant description is valid HGVS syntax.

Besides variant description conversion, Mutalyzer also provides web services that report
detailed information about genes and their transcripts.

1.2 LOVD database tables

Figure 1 shows the relevant tables in the LOVD database model.
In an LOVD database, genes and transcripts are stored in the ‘genes’ and ‘transcripts’

tables, respectively. One gene can have several transcripts linked to it, but logically, each
transcript belongs to a single gene.

In order to support variants that are not linked to a certain gene, all variants in LOVD are
stored in the ‘variants’ table by their chromosomal positions. Other information stored in the
‘variants’ table includes the type of variant (whether it is a substitution, deletion, insertion,
duplication, etc.) and its predicted functional effect. The actual description of the variant is
formatted and stored according to the guidelines provided by the HGVS.

If a variant hits a certain transcript, a separate entry in the ‘variants_on_transcripts’ table
links the genomic variant entry to a specific transcript. The ‘variants_on_transcripts’ table
stores additional information about this variant on the transcript, like its position on the tran-
script and the HGVS description on the transcript level. Also the functional effect and the
possible change in a protein’s amino acid sequence that this variant may cause is stored here.

Individuals are stored in the ‘individuals’ table. When an individual has been screened
for variants, a screening entry is added in the ‘screenings’ table, which describes the type of
screening (like NGS) that was performed.

Because several variants may be found with a single screening, and the same variant may
be confirmed in different screenings, the connection between ‘variants’ and ‘screenings’ is a
so-called many-to-many relationship. Since in a proper data model a column can only contain
a single value, and the other values should not be duplicated over multiple rows, many-to-
many relations are done through a separate two-column table. Thus, in the case of LOVD,
connections between ‘variants’ and ‘screenings’ are stored in the ‘screenings_to_variants’ table.

4



Introduction LOVD database tables

Diseases are stored in the ‘diseases’ table. If an individual is known to have a certain
disease, this link is made through a separate ‘individuals_to_diseases’ table. Likewise, genes
that are associated with a given disease are linked through the ‘genes_to_diseases’ table.
Phenotypical data related to diseases, like blood pressure, are stored in the ‘phenotypes’ table
and reference the individual and the diseases they are related to.

Figure 1: An overview of the relevant tables in the LOVD 3.0 data model.

1.2.1 Columns and links

Besides from the more ‘biological’ tables, LOVD also has a number of database tables to
support flexible storage of the data itself.

LOVD allows database managers to add additional data columns or edit some of the default
columns in a feature called ‘Custom columns’. Custom columns can be added to the ‘variants’
(also called ‘VariantsOnGenome’ in the context of custom columns), ‘variants_on_transcripts’,
‘individuals’, ‘screenings’, and ‘phenotypes’ tables. The column settings (name, description on
submission forms, allowed values, etc.) are stored in the ‘columns’ table. When a column is
physically added to the database table, another entry is included in the ‘active_columns’ table.
This allows LOVD to display tables that include custom columns without having to inspect
the structure of all relevant database tables in advance.

Furthermore, LOVD 3.0 allows ‘variants_on_transcripts’ custom columns to be activated
on a per-gene basis. Similarly, ‘phenotypes’ custom columns can be activated on a per-disease
basis. When having several diseases in LOVD, this saves submitters from having to fill out
long forms with information that is not related to their specific disease or gene of interest.
The ‘shared_columns’ table contains the links between these columns and the gene or disease

5



Materials and Methods

entries they are active for, along with settings specific to that gene or disease.

Another feature, called ‘Custom links’, allows data to be linked to external resources, like
dbSNP.[6] Custom links specify a ‘place holder’ that is replaced with the actual link when
the data is viewed. For example, the dbSNP custom link that comes with LOVD by default,
replaces the place holder {dbSNP:rs12345} with a link to dbSNP entry rs12345. Such custom
links are stored in the ‘links’ table. They can be activated for each custom column separately.
The ‘columns_to_links’ table keeps track of which custom links are active for which custom
columns.

The custom links feature has some advantages over storing raw URLs. The most important
advantage is that the custom links feature provides improved security. Without custom links,
LOVD would need to allow the use of HTML to enable users to include links to other databases.
This is a security risk, because users can include links or scripts to malicious websites, allowing
for web forgery.

Another advantage is that all links can be changed easily in case an external resource moves
to a different location. Furthermore, users do not need to know the exact URL format for a
certain resource. The place holder can be inserted with a single mouse click, leaving only the
ID to be entered by the user. And finally, instead of showing complete URLs in data tables,
only the database name they refer to is displayed, which saves a lot of space and also results
in a much cleaner look.

2 Materials and Methods

2.1 Variant Call Format

The Variant Call Format[2] was the first file format for which importing data into an LOVD 3.0
database was implemented. In this tab-delimited file format, each line in the file corresponds
to a single location in the genome. VCF files do not provide annotation of the variants on
transcripts.

A small, fictional VCF file may be found in Figure 2.

Figure 2: A simple VCF file that shows the basics of the format. The data shown here is fabricated.

6



Materials and Methods Variant Call Format

2.1.1 VCF file structure

VCF files begin with a number of header lines that include metadata such as the file format
version and the name of the program that generated the file. These lines are easily distinguished
since they begin with two hash characters (##). The header lines also contain descriptions
of any filters that have been applied and the various bits of data that are provided for each
position in the file. These descriptions specify an ID of the filter or data field (usually a
two-letter abbreviation), the number of values a data field can take, the type of the values
(integer, float, string (text) or flag (a data field with no value, the presence of which
indicates that a certain condition is met)) and a short textual description of the data field or
filter.

Variant data
The last header line begins with a single hash character and contains the column headers. VCF
files contain 8 fixed columns and one optional column which is only present when the VCF
file includes sample data; genotype-related information for a specific individual, tissue, or cell
line that was sequenced. These are summarised in Table 3. If the VCF file contains sample
data, the FORMAT column is present and it is followed by one extra column for each sample
containing the actual data.

Column Description Content
CHROM The chromosome number. chr15, chrX, etc.
POS The nucleotide position. Positive integers
ID A dbSNP ID. rs12345
REF Bases in the reference sequence. A, ATG, etc.
ALT Alternate alleles found for this site, sepa-

rated by commas.
C, AT,AG, etc.

QUAL Quality of the data for this site. Positive decimal numbers
FILTER Whether the data passes the applied filters. PASS, or the IDs of the

failed filters
INFO Detailed data about this site, separated by

semicolons.
Pairs of IDs and values like
DP=14;AA=T

FORMAT Which sample data is included for this site
(if applicable), separated by colons.

IDs of the included fields,
like GT:GQ:DP

(Samples) The data specific for this sample. A sepa-
rate column for each sample.

Values, like 0/1:48:8

Table 3: Columns in the Variant Call Format.

The variant data begins after the line containing the column headers. Each line in the
file corresponds to the chromosome and position given on that line. The VCF specification
prescribes that the sites are ordered by position and grouped by chromosome. If certain data,
for example a dbSNP ID, is missing or unknown, a ‘.’ is used in place.

For all variants that are not substitutions of a single base by another, the VCF file includes
extra bases around the actual variant. For example, the base before a deletion is always

7



Materials and Methods Variant Call Format

included in the file, so for a deletion of the ‘T’ in ‘AGTC’, the REF column contains ‘GT’ and
the ALT column contains ‘G’. Similarly, VCF files may also contain a few bases after the variant
under some circumstances.

If the file contains sample data, the VCF specification prescribes that a GT field is included
as the first field for each sample, containing the genotype for that sample. A value like 0/1
means that the sample contains a REF allele (0) and the first ALT allele (1). Similarly, 1/2
denotes a case of compound heterozygosity: both the first and second ALT alleles are present.
For phased data, where it is known that certain variants are present together on the same
chromosome, the slash is replaced by a pipe character (i.e. 1|1).

Genotype data may also be specified using ‘Phred-scaled likelihoods’ in the optional PL
field. This is a comma-separated list of integers between 0 and 255, where 0 is the most
probable. Each likelihood score refers to a specific possible genotype, in the order 0/0, 0/1,
1/1, 0/2, 1/2, etc. Thus, a PL value of 255,220,234,190,0,201 specifies a genotype of
1/2.

2.1.2 Reading VCF files

The VCF file importer that was written for LOVD first skips the header lines, because they
contain no data relevant to LOVD, and then reads the variants from the file one by one. The
file is not read into memory all at once, because PHP scripts may only consume a limited
amount of memory to prevent issues on shared web servers that run several distinct websites.

If a line in the VCF file contains more than one alternate allele, a separate entry for each
allele is inserted into the database. Variants that can’t be stored, which may be the case if
the bases contain uncertainties or the chromosome number is invalid, are counted and the first
100 are printed at the end of the import so the user can see what may be going wrong.

If sample data is present, variants that are not included in the genotype of any of those
samples are not imported.

Making HGVS descriptions
In LOVD, the variants need to be described according to the HGVS nomenclature guidelines.
The VCF import script can recognise all variant types listed in Table 2.

The variant types are detected as follows. First, the variant’s startPosition is defined as
the position in the POS column of the VCF file, and the endPosition is the startPosition minus
one plus the number of given REF bases. Because VCF files may contain flanking bases that
are not part of the variant, identical bases at the beginning of the reference and alternate allele
sequences are removed and the number of removed bases is added to startPosition. Identical
bases are removed from the ends of the sequences in a similar fashion, lowering endPosition
by the number of removed bases. These simple steps isolate the difference between the REF
and ALT sequences. Then, the remaining sequences are compared.

• If ALT is empty, the variant is a deletion of REF and the HGVS notation is
g.startPosition _endPosition del.

• If REF is empty, and the original ALT (before truncating) contained twice the truncated
ALT, it’s a duplication. In this case, the startPosition must be lowered by the number of

8



Materials and Methods Mapping the variants to transcripts

duplicated bases. The HGVS notation becomes g.startPosition _endPosition dup.
• If REF is empty, and it was not a duplication, it’s an insertion. In this case, due to how the

truncation steps changed the positions, startPosition and endPosition must be exchanged
first. Then, the HGVS notation becomes g.startPosition _endPosition insALT .

• If REF and ALT are both one base, it’s a substitution and the HGVS notation is
g.startPositionREF >ALT .

• If ALT is the reverse complement of REF, it’s an inversion and the HGVS notation is
g.startPosition _endPosition inv

• Finally, any other case is considered to be a deletion followed by an insertion and the
HGVS notation becomes g.startPosition _endPosition delinsALT .

For variants on mitochondrial DNA, g. is replaced by m. to reflect this. Also, for deletions
and duplications of a single base, endPosition is omitted.

Once the HGVS description has been constructed, the variant is ready to be inserted into
the database. If the user submitted the VCF file as part of a mutation screening, the variants
are linked to the screening in the ‘screenings_to_variants’ table.

2.2 Mapping the variants to transcripts

When a user enters a single variant entry, they get the option to enter information about
that variant on specific transcripts too. However, when someone imports tens of thousands of
variants from a VCF file, this process must be automated instead. Therefore, a second major
new feature in LOVD 3.0 is automatic variant mapping.

Because the process of mapping variants to transcripts relies on a number of web services,
it generates quite some slow queries over the internet. This makes automatic mapping a slow
process that can’t be executed ‘on-the-fly’ while importing the variants. Instead, all variants
are loaded into the database including only the genomic data that can be found in the VCF file.
The variants are then processed in small groups to map them to known genes and transcripts
using services on the internet without requiring any user intervention. The script runs in the
background while users can continue browsing the database.

2.2.1 Keeping the script running

If there are any variants in the database that await automatic mapping, the web browser sends
a request to the web server, which will run the mapping script. The mechanism by which the
browser requests additional data from the server without reloading the web page is an example
of LOVD 3.0’s use of AJAX (Asynchronous JavaScript And XML). This is implemented by a
tiny script embedded in the footer that is included on every page in LOVD.

After mapping a number of variants to transcripts, the server reports back with some
feedback on the progress. The reported data is visualised by means of a small circular progress
meter in the footer of the page. Depending on whether there are any more variants to map,
the browser automatically sends a new AJAX request for the script to the server. This way,
the automatic mapping process is kept active as long as anyone has a browser window with
LOVD opened.

9



Materials and Methods Mapping the variants to transcripts

When all variants are mapped, the time is saved in the user’s session data and the browser
will not automatically request the mapping script for 24 hours.

2.2.2 Overview of the mapping script

The mapping script performs a number of steps each time it is called.

1. Select a group of variants to map during this call.
2. Get a list of genes and transcripts that are present within the range of the variants and

find out which of those genes and transcripts each variant hits.
3. If the user requested so, attempt to create gene and transcript entries for genes that are

not yet in LOVD.
4. Retrieve mapping information about the variant on the transcripts in the database and

insert this information into the database.

1. Selecting a group of variants
When development of the mapping script began, there were no means to store mapping
progress information in the database. Any variants that did not have ‘variants_on_transcripts’
entries in the database would be considered ‘unmapped’ and would be picked up by the script.
The script kept a counter of the number of variants that it could not map on each chromosome
(for example because the variant did not hit any transcript) in the user’s session data.

The mapping script first selected a random chromosome with unmapped variants (variants
without ‘variants_on_transcripts’ entries) on it at the beginning of each call. It would then
select the first 5 unmapped variants on that chromosome, ordered by position, skipping the
number of variants that it could not map previously. This was later changed so it selects one
variant plus at most 24 others within a range of 100,000 bases downstream of that. In case
these values need to be changed this can be done easily, because these values are defined at
the beginning of the script. This prevents the script from requesting irrelevant transcript data
for a large portion of the chromosome between two distant, yet consecutive, variants. The
limit of 25 variants per call is implemented to make sure the script will not attempt to map
many variants in one go, which may make the call very slow.

However, this approach had three important drawbacks. First, the counters in the user’s
session data would reset when a user logs on or off, which caused the script to re-attempt all
failed variants. Second, if the user would add a variant at the beginning of the chromosome,
the script may skip over it thinking that it failed mapping previously. And finally, two instances
of the script would process the same variants if they select the same chromosome (either by
chance or because there is just one chromosome with unmapped variants left).

This issue was later resolved by adding a new ‘mapping_flags’ data column to the ‘variants’
database table. This single-byte column allowed for a number of refinements to the mapping
script. An overview of the different flags that are stored in this column, can be found in
Table 4.

First of all, instead of automatically mapping all variants in the database, users can now
select whether a variant should be mapped. Additionally, the user may select whether the

10



Materials and Methods Mapping the variants to transcripts

Flag name Description
ALLOW Flags whether the user requested automatic mapping for this

variant.
ALLOW_CREATE_GENES Flags whether the mapping script may create a gene entry

if this variant can be mapped to genes that are not in the
database.

IN_PROGRESS Flags that the mapping script is currently working on this
variant.

NOT_RECOGNIZED Is set when Mutalyzer could not parse the variant description,
usually because it is not valid HGVS syntax.

ERROR Is set when the mapping script failed to connect to Mutalyzer
while working on this variant.

DONE Is set when the mapping script has successfully processed the
variant, regardless of whether the variant actually got mapped
to anything.

Table 4: Mapping flags.

mapping script should attempt to create a gene entry if it can’t map the variant otherwise.
The option to turn on automatic mapping is currently only present on the VCF file upload form,
but the LOVD development team may decide to add automatic mapping controls elsewhere in
LOVD in the future.

Next, concurrency is improved because the mapping script can now flag the variants it is
working on. Other concurrent calls to the script will ignore those variants which prevents two
instances of the script from doing the same work.

Because the flags can be used to isolate which variants need to be mapped, the variant
selection step at the beginning of the process has been improved in two ways. The script can
now map variants that are already mapped to other transcripts because it no longer identifies
unmapped variants by the absence of a ‘variants_on_transcripts’ entry. And because there is
no need to count unmappable variants, the variants are no longer processed in order of position
which improves efficiency when running multiple instances of the script concurrently. Instead,
the script now selects at most 25 variants within a range of 100,000 bases starting with a
randomly chosen unmapped variant. This also eliminated the need for selecting a random
chromosome first.

And finally, the mapping script is automatically suspended for one hour in case the con-
nection to Mutalyzer fails. An error log entry is created when this happens, too. Users can
still click the progress indication icon to resume the mapping process immediately.

The script was later extended to be able to map one specific variant on request. This
allows users to retry mapping the variant in case it failed, or to map the variant to newly
added transcripts in one click.

11



Materials and Methods Mapping the variants to transcripts

2. Getting the relevant transcript data
Once the script has selected a number of variants, it will request a list of all transcripts in the
range of the variants using the web services provided by Mutalyzer. For each transcript, the
genomic start and end positions, the gene symbol and the NCBI accession number (usually
starting with NM_) including its version number are requested. Because Mutalyzer did not have
a web service that includes this information in one call, the script originally needed to do 3
extra calls for each transcript to get the relevant information.

1. Retrieve a list of relevant transcripts by asking Mutalyzer for the c. HGVS descriptions
for a deletion of the range of interest (e.g. chrX:g.123000_125000del).

2. For each transcript, ask Mutalyzer about positions of the transcript’s features (a list of
exons, but also the begin and end positions of the transcript itself), which are given
relative to the start codon in the transcript.

3. Ask Mutalyzer for the g. HGVS description for a deletion of the entire transcript (e.g.
NM_001234.5:c.-35_*280del) to get its genomic start and end positions.

4. Finally, request the gene symbol associated to the transcript.

In weekly work discussions between the LOVD team and the Mutalyzer team, the issue
of getting the transcript position data from Mutalyzer was communicated to the Mutalyzer
development team. They agreed that this was difficult to do with their current web services.
A few weeks later, a new version of Mutalyzer was released which included a web service to
provide all information about all transcripts in a given chromosomal range. With the imple-
mentation of the new web service, the mapping script made over 60% less calls to Mutalyzer’s
web services which sped the script up a lot.

Now that a list of transcripts has been built, the script starts looping the selected variants.
The script first checks with which transcripts each variant has some overlap. If the variant
hits any genes that are already present in the LOVD database, the script will map it onto all
transcripts for all those genes that are already in the database.

3. Adding genes to the database
If the uploader of the variants opted to create new gene entries as needed, the script will add
all genes which are not in LOVD but are hit by the variant so the variant can be mapped onto
all of those.

Most gene-specific information in LOVD, which is stored in the ‘genes’ table in the
database, comes from the HUGO Gene Nomenclature Committee (HGNC)[7]. The HGNC’s
most important task is to approve and assign standardised gene symbols. The code that re-
trieves information from the HGNC database was partly modified for the mapping script, so
that it can find the current gene symbol in case the HGNC has deprecated a specific entry.
The retrieved information includes the current gene symbol, gene name, chromosomal position
(number and band), IDs for the OMIM, Entrez and HGNC databases, and a transcript acces-
sion number. The transcript accession number retrieved from the HGNC is either the most
studied transcript, or otherwise the longest for that gene.

12



Materials and Methods SeattleSeq Annotation files

Besides this, LOVD stores an LRG_ or NG_ accession number, which identifies the genomic
reference sequence of the gene much like NM_ accessions identify transcript sequences. If no
LRG_ or NG_ accession number is available for this gene, the NC_ accession number of the
chromosome is used instead. This genomic accession number is retrieved from a file on the
LOVD website, which mirrors data available at the NCBI. Additionally, for communications
with Mutalyzer, LOVD needs to query Mutalyzer for a special UD_ identifier that refers to a
portion of the chromosome covering the gene and its flanking regions.

With this UD_ identifier, a detailed list of all the gene’s transcripts is requested from
Mutalyzer. The script finds the transcript provided by the HGNC in this list and inserts the
associated data into the ‘transcripts’ table in the database.

4. Mapping the variants to the transcripts
Finally, the script calls three other Mutalyzer web services to get the HGVS descriptions and
the positions of the variant on this specific transcript and its protein product.

1. Mutalyzer’s mappingInfo web service provides the positions of the variant relative to
the transcript reference sequence.

2. Then, the numberConversion web service converts the g. HGVS description to a c.
description on the transcript level.

3. Finally, the runMutalyzer web service is used to retrieve a p. HGVS description on the
protein level for the c. description that was provided by the numberConversion web
service.

Once the script has fetched this additional information, it creates a new entry in the ‘vari-
ants_on_transcripts’ table to store it in the database.

2.3 SeattleSeq Annotation files

After the VCF import support and the ability to map imported variants to transcripts, the Seat-
tleSeq Annotation file format was the second NGS data format to be supported by LOVD.[3]

2.3.1 SeattleSeq Annotation file format

Like VCF, SeattleSeq files are also tab-delimited text files. SeattleSeq files can have metadata
(or commentary) lines at the beginning and at the end of the file, which need to be skipped.
They can be detected easily because they begin with a single hash character (#). The line
containing the column headers also begins with a hash character; it is the last metadata line
at the beginning of the file.

After that, each line in the file represents a specific location on a chromosome, much like it
is done in VCF files. However, if a variant hits more than one transcript, the line is duplicated
for each transcript and only the transcript-specific columns are different on the duplicated
lines.

Missing values are substituted by none, unknown, or NA (for ‘Not Available’) — whichever
is considered to be most appropriate in each case.

13



Materials and Methods SeattleSeq Annotation files

Most of the columns in the file are optional and can be selected as output options on the
SeattleSeq Annotation submission form. Some of the default columns include chromosome,
position, rsID (for dbSNP), referenceBase, sampleGenotype, (transcript) accession,
aminoAcids, and functionGVS and functionDBSNP for functional effects.

SNP files
SeattleSeq Annotation files come in two flavours: SNP files (Single Nucleotide Polymorphism)
which contain only single-base substitutions, and indel files (insertion/deletion) which can
contain all other genetic variations. Because the exact format of the indel files depends largely
on the original input that was sent to SeattleSeq, the import of indel files was added later;
earlier versions of the SeattleSeq import script only supported SNP files.

For SNP files, the sampleGenotype column may contain an ‘M’, ‘R’, ‘W’, ‘S’, ‘Y’, or ‘K’
besides the usual bases which represent heterozygous cases. See Table 5 for their meanings.

Letter Represents Meaning
R A and G puRine
Y C and T pYrimidine
M A and C aMino
K G and T Keto
S C and G Strong chemical interaction
W A and T Weak chemical interaction

Table 5: Bases representing heterozygosity in SeattleSeq files.

Indel files
Adding indel file support was difficult because SeattleSeq’s indel output format depends on
the exact input when the file was submitted to the SeattleSeq Annotation server.

For example, SeattleSeq files based on BED files have radically different values in the
sampleGenotype column. The column contains D1 for a deletion of one base and I1 for
an insertion of one base. For deletions, the referenceBase column contains the deleted
bases. However, for insertions, the referenceBase column contains only the flanking bases,
separated by a hyphen (-). The inserted bases may be found in the optional sampleAlleles
column because SeattleSeq copies the raw BED data to that column if it is present. If the
column is missing, LOVD will produce an HGVS description like g.12345_12346ins3 for an
insertion of 3 bases, since the SeattleSeq file doesn’t specify which bases were inserted. If the
column is present, the inserted bases are included in the HGVS description, and single-base
duplications are described as such.

For SeattleSeq files created from VCF files with only indels, SeattleSeq provides the option
to return either ‘SeattleSeq Annotation original allele columns’ or ‘VCF-like allele columns’. In
both cases, the sampleGenotype column contains the exact alleles (e.g. CT/C for a heterozy-
gous deletion of T). The latter option simply copies the REF and ALT columns from the VCF
file to the referenceBase and sampleAlleles (if present) columns.

14



Materials and Methods SeattleSeq Annotation files

With ‘SeattleSeq Annotation original allele columns’ however, SeattleSeq modifies the
data in the referenceBase column to be similar to what it looks like for SeattleSeq files
created from BED files. The sampleAlleles column, if present, contains codes similar
to the sampleGenotype column for BED files. In any case that is more than a simple
deletion or insertion (delins variants and compound heterozygous cases are common exam-
ples), the referenceBase column contains only the second base from the REF column. The
sampleAlleles column contains CX (for ‘complex’) or sometimes even unknown in these
cases. This is a very problematic format, since it makes deletions, insertions and substitutions
indistinguishable from one another.

Furthermore, the two allele column formats can only be distinguished from each other if
the sampleAlleles column is provided or an insertion is present in the file. The SeattleSeq
import script will try to detect which SeattleSeq format is used. If the script runs into an
insertion that is annotated in the ‘SeattleSeq Annotation original allele columns’ format, the
whole import is reverted and a warning message is displayed.

For files with ‘VCF-like allele columns’, the script identifies the alternate alleles from the
sampleGenotype column and then generates HGVS descriptions using the same code as the
VCF import.

2.3.2 Importing SeattleSeq files

To be able to store the transcript-specific variant data that is included in SeattleSeq Annotation
files, the SeattleSeq file importer must map the variants ‘on-the-fly’ while the import is running.
This may make importing SeattleSeq files a slow process, especially if many gene and transcript
entries need to be created at the same time. Therefore, users are given the option not to create
any genes and/or transcripts during the import, if their genes of interest are already in the
database.

A special function was written to process the file. This function returns an array of key-
value pairs for one genomic variant on each call. The lines of data in the transcript-specific
columns are grouped into sub-arrays. This way, the rest of the script can easily access data
fields using the column names.

The function that reads the variants detects the header line on the first call and remem-
bers it internally (using a ‘static function variable’ that is preserved across function calls) for
subsequent calls. Besides that, the function also saves the last-read line in a static variable.
This is needed because it must read one line too much in order to know that it has read all
lines that belong to the same genomic variant before returning the data.

After the script has read a variant, it first constructs a description in HGVS format. If the
sampleGenotype is one of the six letters in Table 5, and the referenceBase is not one of
the two bases represented by the sampleGenotype, both alleles have changed differently so
the sample must be compound heterozygous. In this case, the script will split up the variant
into two entries, one for each allele.

Then, the script will loop through the transcript accession numbers for the variant. For
each accession number, the corresponding gene symbol is requested from Mutalyzer. These
calls are cached, which means that the same accession number is not queried a second time,
to speed up the script.

15



Materials and Methods Finding the same variant in other LOVDs

If this gene is not yet in the database, it must be added to be able to store the data about
this variant on the gene’s transcripts. Therefore, the script will prepare the gene’s data in a
format that is ready to be inserted into the database. The actual insertion will only be executed
once the script is going to insert a variant mapped to this gene for sure; if for whatever reason it
can’t get sufficient data to map the variant, for example because Mutalyzer does not recognise
the transcript, the gene won’t be inserted either. The SeattleSeq import script gets the gene
data from the HGNC database and a UD_ identifier from Mutalyzer similarly to the automatic
mapping script.

The next step is to get the transcript in the database, if it isn’t already in there. Detailed
data about all the gene’s transcripts is retrieved from Mutalyzer using the UD_ identifier of the
gene. The data for each transcript is parsed into a format that is ready to be inserted into the
database. The Mutalyzer call does not need to be made again for the same gene because a
single call provides data for all of the gene’s transcripts.

To prepare the ‘variants_on_transcripts’ entry, the script constructs the HGVS p. descrip-
tion of the variant on the protein using the data from the SeattleSeq file. The c. description
is retrieved from Mutalyzer, along with transcript-based positions.

Finally, the variant entries that were constructed (usually one, but two in compound het-
erozygous cases) are inserted into the database. If the user was submitting the SeattleSeq file
as part of a mutation screening, a ‘screenings_to_variants’ entry is created too. The script
loops the ‘variants_on_transcripts’ entries to insert them into the database, also inserting any
genes and transcripts that they rely on.

After this, the script is ready to read the next variant from the file.

2.4 Finding the same variant in other LOVDs

The last new feature described in this report is the ‘Global Search’ service, which allows users
to search for a specific variant in any public LOVD installation worldwide. This allows users
to find out quickly and easily whether a given variant has been reported and studied before.

The service makes use of a database hosted on LOVD.nl, which contains an index of 36,000
variants1. This database is updated weekly by querying the APIs of all known LOVDs to see
if they have updated information.

The list of known LOVD installations is kept as follows. When LOVDs query LOVD.nl
for software updates, they send some information about themselves to the website. This
information includes the URL for the LOVD, their current software version, a unique signature,
and various statistical data like the number of genes and variants in the database. The script
that updates the central variant database makes use of this list of LOVDs to be able to find
them.

Although this central variant database already existed, it was not used for anything in
LOVD 2.0. Thus, a script was yet to be made to expose the information in the database in
a simple API so LOVD 3.0 can access the data. The API can be called with a number of
parameters as listed in Table 6 to narrow down the search. Since the position parameter is

1As of 15 March 2012

16



Results

mandatory, it is not possible to extract bulk data from the database by calling the API without
parameters.

Name Values Description
build hg18 or hg19 Return results in the given human

genome build. Defaults to hg19.
symbol A gene symbol Return only variants that are found

within the given gene.
position [chrX:][g.]start [_end ] Mandatory field. Return only results

in a specific position. The chromo-
some may be omitted if a gene symbol
is specified.

position_match exact, partial,
or exclusive

Selects whether the positions must be
matched exactly, must overlap par-
tially, or must overlap entirely, respec-
tively. Defaults to exact.

Table 6: Search options for the Global Search service.

However, the API will never return more than 50 variants and it is designed to provide only
minimal information. Instead, users are directed to the originating LOVD to find additional
data. These two measures prevent abuse of the service and maintain traffic to the original
data source, respectively.

3 Results
LOVD 3.0 has a user-friendly submission process that guides the user through the process of
entering new information about the various data entities (individuals, phenotypes, screenings,
variants, etc.) and links everything together. The process keeps track of the choices and data
additions the user has made and sends a summary to the database curators and managers by
email when the submission is finished.

3.1 Importing files

The VCF and SeattleSeq file upload options appear in the submission process only for managers,
because they are the only users with the permissions to add large-scale data. Where other
users only get the options to enter a variant on genomic level or genomic and transcript level,
managers also see the option to upload a file with genome-scale information. After clicking
the new option, they are taken to the file format selection as seen in Figure 3.

3.1.1 VCF file uploads

After clicking the Variant Call Format option, users are taken to the VCF upload form (Fig-
ure 4).

17



Results Importing files

Figure 3: File format selection in the LOVD 3.0 submission process.

Figure 4: The Variant Call Format upload form.

The form reports the maximum possible file size that can be uploaded. This depends on
the settings of the web server; PHP’s settings post_max_size and upload_max_filesize
are checked and an additional maximum size of 50 MB is specified in LOVD’s source code.

Below the file selection field, the user is reminded about the database’s human genome
build configuration. This is done because the import script and the automatic mapping both
blindly interpret all positions to be relative to that build of the genome since there is no
standardised way to mention the build in VCF and SeattleSeq files. Because of this, uploading
a VCF file that was generated with respect to a different build of the genome would flood the

18



Results Importing files

database with nonsense. The human genome build is presented as a selection list with only
a single option, because this was the best-looking way to place this note in the form without
bulky message boxes.

Users can select in which data column they want to import dbSNP identifiers, if they are
present in the VCF file. The drop-down list contains all custom columns that accept dbSNP
custom links (the columns and links can be set up in the LOVD setup area). This way, LOVD
will automatically generate clickable links to dbSNP when the data is viewed.

In the ‘Mapping variants to transcripts’ section of the upload form, users may select whether
they want to make use of the automatic mapping functions. The first check box sets the
ALLOW flag for all imported variants, whereas the second sets the ALLOW_CREATE_GENES flag
(see Table 4 on page 11).

After importing the VCF file, LOVD guides the user automatically to the next step in the
submission process. However, if some variants could not be imported, the user is informed
about this and the lines that could not be imported are shown on-screen. This can be seen
in Figure 5, where the uploaded VCF file contained 8 lines with ‘N’ bases in the ALT column.
Because these variants are not clear, these lines were rejected from the import.

Figure 5: The user is informed of the fact that some lines in a VCF file could not be processed.

It is also worth to note that the line ‘Below is a list of . . . ’ is made entirely context-
dependent which keeps this ‘bad news message’ somewhat more friendly. For example, the
text changes to ‘Below is the variant that could not be imported’ if just one variant could not
be imported. On the other hand, if many variants could not be imported, the text changes to
‘Below is a list of the first 100 of . . . ’ to reflect that not all of them are shown. In LOVD,
phrases like ‘1 variant(s)’ are always avoided.

3.1.2 SeattleSeq file uploads

The SeattleSeq file upload form shares most of its code with the VCF file upload form, but it
shows slightly different options and adds a number of new things. The hard-coded maximum

19



Results Importing files

file size for SeattleSeq Annotation files is 350 MB, although this is still limited to the server’s
settings. A screenshot of the SeattleSeq upload form can be seen in Figure 6.

Figure 6: The SeattleSeq Annotation file upload form.

Users may select whether they want the importer to ‘Create genes and transcripts’, ‘Create
transcripts only’, or ‘Do not create genes or transcripts’ at all. A warning at the top of the
upload form informs users of the fact that creating genes may significantly slow down the
process.

Special care had to be taken of the additional information that SeattleSeq files provide.
For this, LOVD 3.0 comes with a number of preconfigured custom data columns that database
managers can activate and modify. The data in the SeattleSeq file can’t be imported if the
columns are not enabled. Therefore, the SeattleSeq import script checks for their existence
and displays any columns that may be disabled in an extra notification box on the form, as
seen in Figure 7. The notification box also provides some simple tools to set up the columns
so the user doesn’t have to go to the setup area to set them up correctly.

Figure 7: The user is informed of a number of SeattleSeq data columns that need to be activated.

The notification is generated by an AJAX script that checks the columns. The ‘Re-check’
link simply refreshes the notification box by requesting a new one using AJAX.

20



Results Importing files

The ‘Make standard’ links are also implemented using AJAX, since they only require a
small change in the ‘columns’ table. When the user clicks a ‘Make standard’ link, the browser
does an AJAX request for a script that makes this change. The server sets the column to
standard and reports back to the browser with a status code that specifies whether the change
was successful. If it was, the notification box is refreshed, otherwise the user is prompted with
the message that the column could not be edited. With normal use of LOVD, this can only
happen if the user has been logged out because they haven’t done anything for a long period
of time after opening the upload form.

Because enabling columns may require the database table to be changed physically, the
‘Enable’ links open a small pop-up window asking for the user’s password for extra authori-
sation. Additionally, in the case of ‘VariantOnTranscript’ columns, the user is also asked to
select the genes for which the column is to be activated. LOVD will create an entry in the
‘shared_columns’ table for each gene that is selected, to enable the column for that gene. The
pop-up, as seen in Figure 8, shows the same interface as what is used in the column set-up
in the LOVD setup area, albeit with minimal headers and footers. If the database contains a
lot of information, the user is notified that the operation may take more than a few seconds.
In this time, the database will be locked (and thus unusable for anyone) because its structure
needs to be changed to add the column. After the column is enabled, the pop-up closes itself
and refreshes the notification box using AJAX.

Figure 8: This pop-up allows users to quickly enable columns before they upload a SeattleSeq file.

During the import, the user sees a progress bar similar to the one in Figure 5. However,
although the VCF import progress bar only shows ‘Loading variant data from the file . . . ’, the
SeattleSeq progress bar also shows the number of variants that have been processed. When
the SeattleSeq import is busy adding genes or transcripts, an extra line like ‘Loading gene
information for DMD . . . ’ provides additional detail. This is done to make it more evident
that the script is actually working, because the progress bar fills quite slowly for large imports
that create many gene entries.

At the end of the import, the user sees a screen quite similar to Figure 5.

21



Results Automatic mapping

3.2 Automatic mapping

Because the automatic mapping functionality is running in the background, progress informa-
tion is communicated to the user by means of a small circular progress meter in the footer of
every page. Additional textual progress information is shown when the user moves the mouse
pointer over the progress meter, as illustrated in Figure 9.

Figure 9: The automatic map-
ping progress meter.

Figure 10: Automatic mapping can be suspended temporarily.

In case automatic mapping fails to connect to Mutalyzer, it is suspended for one hour.
When this happens, the progress information looks like Figure 10.

Additionally, a single variant can also be mapped on demand at the variant’s entry page
in LOVD. The variant entry page lists the automatic mapping settings for that particular
variant (usually ‘Off’, ‘Scheduled’, or ‘Done’; possibly also ‘creating genes as needed’). A link
is provided to map the variant immediately, which calls the mapping script using AJAX and
passes the variant ID that needs to be mapped. When the server reports back, the page is
reloaded to reflect the changes. A screenshot of a variant entry with mapping information can
be seen in Figure 11.

Figure 11: Mapping information displayed on a variant entry page.

In case the mapping script fails to connect to Mutalyzer when processing the variant on
demand, the ERROR flag is set. The automatic mapping line will then include ‘encountered a
problem on the last attempt’ to make this clear to the user.

Also, the text is made entirely context-dependent. For example, the ‘Map now’ link changes
to ‘Map again’ on success or ‘Retry’ on failure.

22



Discussion Global Search

3.3 Global Search

The ‘Search public LOVDs’ button that is visible in Figure 11 is part of the Global Search
service. Clicking it will open a pop-up window which queries the service for this variant and
lists the results. The pop-up window is seen in Figure 12. Clicking any of the results opens
the variant’s page in that particular LOVD installation in a new window.

Figure 12: A pop-up window shows hits from the Global Search service.

4 Discussion

4.1 Relying on web services

Many features new to LOVD 3.0, including automatic variant mapping and SeattleSeq file
import, rely on a number of web services. Also for more fundamental tasks, like adding new
genes or transcripts, LOVD 3.0 downloads data from over the internet.

The dependency on these web services has become painfully clear in the first days of 2012,
as the HGNC database was unreachable for days. Because of this, it was entirely impossible
to create new gene entries in LOVD 3.0 installations.

New plans have been made to solve these problems by mirroring the required data on the
LOVD.nl website. LOVD already mirrors lists of NG_ and LRG_ accession numbers for genes.
When the HGNC database is mirrored on LOVD.nl, some code needs to be modified to use
the mirror when LOVD detects that the HGNC database is down.

4.2 AJAX and PHP sessions

LOVD uses PHP’s session features to keep temporary data about a user’s session. This data
is stored in a temporary file on the web server, which is linked to a specific user by sending
them a cookie with a session key. A script can read and modify the data in the session file
once the session_start() function is called.

To prevent race conditions, where two scripts are writing to the same session file losing
each other’s changes, PHP locks the file while a script is using it. Other PHP scripts will
block on the session_start() call until the lock is removed from the file. Normally, this is
not a problem since a user would usually only browse one page at a time and pages load very
quickly.

However, this turned out to be a problem for the automatic mapping script, which uses
the session file to store progress data. Since a single run of the mapping script can take up
to 20 seconds to complete, it would keep the session file locked for a long time. In this time,

23



Future steps Selecting the ‘best’ transcript for a gene

the user could not load any LOVD page and the searching and sorting features of data tables
would become unresponsive too.

It was not easy to find out why PHP’s session handling was causing these delays. By
printing the execution time of each code block, the delays could be isolated to a single line of
code: the session_start() call. Since calls to the mapping script are done automatically
through AJAX, it took some time to realise that the mapping script would still be running
when trying to leave the page that called it.

The problem was solved by using the session_write_close() function at the beginning
of the mapping script, which closes the session file and removes the lock. At the end of the
mapping script, the session is reopened to write the progress data.

The same workaround was later used in the SeattleSeq import script. Since importing
SeattleSeq files may take a long time, the session is closed while the script is working to enable
the user to browse the database in other tabs.

4.3 Selecting the ‘best’ transcript for a gene

When mapping variants to a newly inserted gene, the mapping script needs to select a transcript
relative to which the variants will be described. The HGNC database provides two transcript
accession numbers for most genes – one ‘curated’ transcript accession which is usually the
most studied or otherwise ‘most important’ transcript, and one ‘mapped’ accession number
which is retrieved from the NCBI automatically and is always the longest transcript for the
gene.

The mapping script currently selects the ‘curated’ transcript accession number if it is
available, using the ‘mapped’ accession number otherwise. In case the HGNC does not provide
a transcript accession number in either data field, the gene is currently ignored. Since this is
rather bad behaviour, the mapping script can be improved by falling back on another accession
in these cases.

5 Future steps

5.1 Mapping script improvements

Although the current version of the mapping script does its job quite well, there are still a few
points that can be improved in the future.

5.1.1 Getting RNA descriptions

Automatic mapping currently only maps g. HGVS descriptions to c. and p. descriptions.
LOVD provides a field for the r. description for variants on transcripts, which is even mandatory
on the manual input form, but it remains empty through the automatic mapping script. The
same holds true for variants imported from SeattleSeq files.

The r. description is not filled in because Mutalyzer does not yet support creating these
descriptions from their web services. Once support for this is implemented into Mutalyzer,
LOVD can make use of the new service to ‘complete’ the mapping script.

24



Acknowledgements New features

5.1.2 Controlling the mapping script

Like the mapping_flags column in the ‘variants’ database table, the LOVD system could use
a configuration column to store status flags about the mapping script itself. For example, there
is currently no way for the database administrator to turn off the mapping script altogether if
they wish to do so.

Also, the mapping script still makes use of the user’s session file to store information like
whether mapping has finished or whether an error occurred. If a user logs off or on, this
information is lost and the mapping script is run again. A minor issue with this occurs if the
Mutalyzer web service goes down temporarily, in which case the mapping script will create an
identical error log entry in LOVD’s system logs for every user currently online.

5.1.3 Making better use of AJAX for the ‘Map now’ link

The ‘Map now’ link on variant entry pages currently calls the mapping script with AJAX.
However, once the script has run, the whole page is refreshed to display the new mappings.
AJAX can be used to refresh only those parts of the page that need to be changed.

This was not yet implemented because for this a number of complex changes need to be
made to LOVD’s code to allow these parts of the page to be reloaded by AJAX.

5.2 New features

Now that LOVD 3.0 allows for NGS data import, new powerful tools need to be created to
handle the amount of data in LOVD effectively. The mapping script automates a lot of work
to provide annotations for the variants, but new tools can be made to make it easier to find
those few disease-causing mutations.

Besides simply listing the variants in the database, LOVD can be a great analysis tool with
the use of intelligent new views on the data. For example, disease-causing mutations can be
detected by sequencing a patient and their parents and then looking at the variants that are
only present in the patient. Such an overview can be added to LOVD easily by allowing users
to filter a list of variants based on the individuals they are connected to. The overview could
be further improved by including variants for which the patient is homozygous, whereas their
parents are heterozygous.

To create these overviews, only small changes need to be made to the LOVD 3.0 source
code, since filtering and searching variants (or any other data in any overview) is already fully
implemented.

6 Acknowledgements
Many thanks go to Ivo Fokkema and Ivar Lugtenburg, the main LOVD developers, for their
guidance, input, and support throughout the project. And of course I would also like to thank
the Mutalyzer developers, Martijn Vermaat and Jeroen Laros, for their help and work.

25



References

References
[1] Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, and den Dunnen JT.

LOVD v.2.0: the next generation in gene variant databases. Hum Mutat, 32(5):557–63,
May 2011.

[2] Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,
Lunter G, Marth GT, Sherry ST, McVean G, and Durbin R. The variant call format and
VCFtools. Bioinformatics, 27(15):2156–8, Aug 2011.

[3] SeattleSeq Annotation server.
http://snp.gs.washington.edu/SeattleSeqAnnotation134/.

[4] den Dunnen JT and Antonarakis SE. Mutation nomenclature extensions and suggestions
to describe complex mutations: A discussion. Hum Mutat, 15(1):7–12, Jan 2000.

[5] Wildeman M, van Ophuizen E, den Dunnen JT, and Taschner PE. Improving sequence
variant descriptions in mutation databases and literature using the MUTALYZER sequence
variation nomenclature checker. Hum Mutat, 29(1):6–13, Jan 2008.

[6] Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, and Sirotkin K.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1):308–11, Jan
2001.

[7] Seal RL, Gordon SM, Lush MJ, Wright MW, and Bruford EA. genenames.org: the HGNC
resources in 2011. Nucleic Acids Res, 39(Database issue):D514–9, Jan 2011.

26


	Introduction
	HGVS nomenclature guidelines
	Mutalyzer

	LOVD database tables
	Columns and links


	Materials and Methods
	Variant Call Format
	VCF file structure
	Reading VCF files

	Mapping the variants to transcripts
	Keeping the script running
	Overview of the mapping script

	SeattleSeq Annotation files
	SeattleSeq Annotation file format
	Importing SeattleSeq files

	Finding the same variant in other LOVDs

	Results
	Importing files
	VCF file uploads
	SeattleSeq file uploads

	Automatic mapping
	Global Search

	Discussion
	Relying on web services
	AJAX and PHP sessions
	Selecting the `best' transcript for a gene

	Future steps
	Mapping script improvements
	Getting RNA descriptions
	Controlling the mapping script
	Making better use of AJAX for the `Map now' link

	New features

	Acknowledgements

